
Can Customers Schedule Their Own Payload Activities?

John Jaap
John.Jaap@msfc.nasa.gov

256-544-2226

Elizabeth Davis
Elizabeth.Davis@msfc.nasa.gov

256-544-2227
Mission Support Systems Group

Ground Systems Department
Flight Projects Directorate

Marshall Space Flight Center, AL 35812
National Aeronautics and Space Administration

Abstract

The term “customer” in the title refers to the payload
developers; they are the real users of a space vehicle,
after all. The answer to the question lies in the ability
to design and deploy a system that allows multiple si-
multaneous users to schedule activities that require
shared resources. In addition, the system must be de-
signed so that it can easily be used by a community
whose members, while being experts in their payloads,
know little or nothing about scheduling. An effort is
underway at Marshall Space Flight Center to demon-
strate the feasibility of allowing users to schedule their
own payloads. A web-based request-oriented schedul-
ing engine and the infrastructure to support it are
being investigated. This system will allow multiple
users, each at a personal computer with a web
browser, to formulate scheduling requests and submit
the requests for immediate automatic scheduling.

Introduction
Scheduling payload operations has historically been done by
a cadre of mission planners who act as agents for the payload
developers. The members of this cadre are experts in the
features, capabilities, limitations, and language of the sched-
uling engine. Different members of the cadre have different
scientific and technical backgrounds; they are usually
matched to the payload they represent. The members be-
come experts in the payload that they represent – often with
the help of extended input from the payload developers.
 The process of collecting requirements is often protracted
with multiple iterations. The payload developer submits pay-
load requirements and descriptions in the requested format.
A cadre member reviews the information and contacts the
payload developer for a better understanding. The payload
developer modifies his submission.
 After the cadre has an adequate (in-depth) understanding
of the requirements, the cadre members use the scheduler to
produce a timeline. The payload developers review the time-
line, make comments, and the cadre makes repairs to the
timeline. Usually, several months elapse between the re-
quirements submittal and the completion and publication of
the timeline.
 The scheduler currently used for the International Space
Station payloads requires expertise to represent the payload
requirements. The lack of several key features causes the
cadre to spend a great deal of time describing a payload’s

actual scheduling requirements in the “vernacular” of the
scheduler, and then to hand build the timeline with a manual
timeline editor to get the desired results. The scheduler can-
not represent or process optional sequences of operations
(multiple scenarios), choice of constraints within a non-
homogeneous group, soft (fuzzy) requirements, or resource
lock-in across sequential tasks. Furthermore, the current
scheduler only supports one cadre member at a time, so the
cadre members must either take turns or funnel all scheduling
through one member.
 If a scheduling system existed that allowed payload de-
velopers to schedule their own payloads, a better timeline
could be produced in less time with fewer cadre members
supporting the system. The delay between describing and
submitting a scheduling request and viewing the results
would be reduced to minutes rather than months. The pay-
load developers could then refine and resubmit their
requirements until they got a satisfactory timeline. The cadre
would only have to preload the scheduling engine with the
envelopes and allocation constraints, define the station and
payload equipment resource requirements, and post-check
that the timeline is safe and meets programmatic constraints.
 ROSE The Mission Support Systems Group at MSFC has
embarked on an effort to design and demonstrate (and possi-
bly deploy) a system that ameliorates many of the
shortcomings of the current system by allowing the payload
developers to schedule their own payload activities. It in-
cludes a graphics-based method for formulating scheduling
requests and a centrally located, multi-user Request-Oriented
Scheduling Engine (ROSE) working against one current set
of resource availabilities and one current timeline. The sys-
tem uses the World Wide Web to allow the user community
(the payload developers – the customers) to readily access
the system from a personal computer or workstation. The
name ROSE is being applied to both the project as a whole
and to the scheduling engine itself.

Web-Based Architecture
ROSE is a web-based application. The users access the sys-
tem via the World Wide Web; no ROSE-specific software is
installed on a user’s computer and no data is stored on a
user’s computer. The user navigates via a web browser to
the ROSE web site, logs on, and proceeds to formulate
scheduling requests and submit them for scheduling. The
user can also review the in-work timeline, delete tasks from

the timeline, and view ancillary information such as resource
allocations and envelopes. An overview of the ROSE archi-
tecture is shown in Figure 1.
 A web-based system is ideal for the payload developers.
Maintenance is literally zero. Opening the web page with a
browser will download and execute the latest version of the
client without any effort on the user’s part. The user can
switch between client computers in his office, home, or even
use a portable without installing ROSE-specific software or
moving any files. Security is the only concern, and security
is being integrated into the ROSE research and development
effort so that an adequate solution can be deployed.
 Implementation The user of ROSE initiates a “web ses-
sion” by opening a web page on a remote web server. The
web server is Microsoft’s Internet Information Server (IIS)
running on a Windows NT/2000 server. The web page
downloads and runs a Java applet. Logon is handled by the
Java applet; the web session is managed by IIS via Active
Server Pages (ASP) and a global.asa file. All communication
with the Java applet, including access to the database, is fa-
cilitated by a set of ASPs written in Visual Basic Script.
Sessions are terminated when the user goes to another web
page or exits the browser, when the server does not receive
communication from the client for an extended period of
time, or when the client or the server is restarted. The client
automatically initiates a new session, without user interven-
tion, when needed. The session manager, which handles
locking of the data in the database, prevents an account from
having more than one active session. This implementation
does not require a continuous connection between the client
and the server. It even allows the client computer to be dis-
connected from the network for an extended period without
loss of cached data or edits.

Modeling – The Critical Element
Modeling in the context of activity scheduling has histori-
cally meant defining an activity’s requirements for shared
resources (power, crew, etc.), time-dependent constraints
(when the vehicle is within view of a target), and sequencing
of activities relative to each other (warm-up before data-take
before shutdown). In the context of ROSE, modeling is also
called “request formulation,” because a model is the core of a

scheduling request.
 Modeling is the process of representing the requirements
in a manner usable by the scheduling engine so that it can
produce a correct and acceptable timeline. Modeling always
requires an in-depth understanding of the payload and how
the scheduling engine behaves. In the current operations
concept, a payload developer provides an in-depth descrip-
tion of the payload to the group, called the scheduling cadre,
which builds the models and eventually runs the scheduler.
After several extended dialogs with the payload developer,
the cadre builds the models for the payload, produces a time-
line, and presents it to the payload developer for review. The
payload developer reviews the timeline and requests changes;
the cadre tweaks the models and (after sufficient iteration
with the payload developer) produces an acceptable timeline.
 If payload developers, who already have expertise in the
payloads, are to formulate scheduling requests and submit
them to a scheduling engine, they must have expertise in the
scheduling engine – this is critical. Being an expert in the
behavior of the scheduling engine means knowing how the
engine will react to a given model, and how to build a model
to achieve the desired results. ROSE will make the payload
developers virtual experts in using the scheduling engine by
making them experts in modeling. ROSE uses a request
format that is a natural representation of the requirements
without adding artificial constraints or constructs. We call
this modeling methodology high-fidelity or hi-fi modeling –
the model looks like the real world payload and the engine
interprets the model as expected. ROSE provides immediate
feedback (when a request is submitted, the resulting timeline
is available immediately), thereby exposing users to the
workings of the scheduling engine. After only a few submit-
tals, the users will know what to expect from the engine
when a request is submitted; i.e., they will become virtual
experts.
 In addition to supporting “hi-fi” models, ROSE provides
a user-friendly interface that is neither laborious nor time
consuming and which requires little or no training. The user
interface of ROSE is the same as that of the Interim User’s
Requirements Collection (iURC) system currently being used
to collect payload scheduling requirements for at least the

MODELS

TIMELINE

Web Server
Database &

Scheduling Engine

Web

Access

Request are formulated via graphics-based Java applet.
Scheduling request are queued to scheduling engine.
Results are reported in the web browser.

Figure 1. ROSE Architecture Overview

first four increments of the International Space Station. This
interface is described in a previous paper (Jaap, Davis &
Meyer, 1997) and in the on-line user’s manual for iURC.
The modeling process itself employs graphical methods to
describe activities and sequences. The user is presented with

a canvas to which items are added and arranged in a hierar-
chy (for activities) or in a network (for sequences). Details
of the requirements are entered via dialog boxes. The advan-
tages of using a graphics method are best illustrated by
example. In the typical International Space Station sequence
shown in Figure 2, the temporal relationships marked with an
F are "follows" relationships, those marked with a D are "dur-
ing," and those marked with an A are "avoid." The sequence
indicates that ACE_setup is followed by ACE_deployed, which
is followed by ACE_stow; during ACE_deployed, ACE_H2S,
ACE_passive, and ACE_exercise are done, but while avoiding
one another. ACE_H2S, ACE_passive, and ACE_exercise are
themselves sequences. This example is a simple sequence;
International Space Station users frequently submit se-
quences with twenty or more tasks and many relationships,
including some to station tasks like reboost and shut-
tle_docking. The graphics representation is understandable
even when extended to large and complex sequences. The
modeling methodology supports optional arrangements of
tasks within the sequence (sequence scenarios), soft require-
ments, and choice of constraints within a group with lock-in
across sequence members.
 Implementation The Java applet provides both request
formulation (modeling) and request submittal. Models are
stored in Microsoft’s SQL Server database hosted on a com-
puter at the site of the web server. When the user selects a
model or a portion thereof for editing, it is downloaded from
the database via the web server (shown on left side of Figure
3). Edits to the models are posted to the database via the web
server whenever the user selects a different activity or se-
quence, submits a scheduling request, or makes an explicit
request to save the data. When posting updates, database
stored procedures are used (shown on right side of Figure 3).
 A model is pre-checked for errors before it is submitted to
the scheduling engine; or a user can request a pre-check at
any time. When a sequence is pre-checked, all the refer-
enced sub-sequences and activities are also checked.

Checking is done on the web server computer by an ISAPI
(Information Server Application Programming Interface)

extension to IIS (shown in Figure 4). The ISAPI is written in
C++. Since the ISAPI is multithreaded, one instance services
multiple simultaneous users. A separate database connection
is made for each pre-check request.
 There is no explicit configuration control of the user’s
models. A user can always edit his models. However, when
a model is added to the timeline (scheduled), an instance of

that model is saved with the timeline and never edited. Thus,
editing a model does not edit what is already scheduled, and
configuration control of users’ models is not required.

JAVA Applet

ASP (VBScript)

Command

SQL

 Record
 Set

 Formatted
Data

Models

Database

Web Server

Client

Figure 3. Reading and Writing

ASP (VBScript)

 Stored
 Procedure
Variables Confirmation

Confirmation
Data
Updates

Figure 2. Typical Sequence

A

A

A
D

D

D

F

F

JAVA
Applet

ASP
(VBScript)

Command

Command

Report
Filename

Models

D
a

ta
b

a
se

W

e
b

 S
e

rv
e

r
C

lie
n

t

ISAPI

Report
Filename

Report

Web
Browser

Http
“Get”

 File
Contents

SQL Record Set

Figure 4. Checking a Model

Scheduling
While the scheduling engine is the key element of the sys-
tem, the user should not need to know how it works – the
user needs only to hone his modeling skills. The scheduling
engine must understand the “language” of modeling perfectly
and should behave exactly as expected. Moreover, the
scheduling engine must provide feedback (reports for suc-
cesses and explanation for failures) to help the user improve
his modeling skills. To be useful, the ROSE system as a
whole must respond to scheduling requests from each of its
multiple users in only a few minutes.

 In ROSE, each scheduling request initiates an attempt to
schedule one performance of one sequence that may have
embedded sub-sequences, repeated tasks, and multiple sce-
narios. The scheduling request is primarily the data in the
model, but the user can override or add additional constraints
such as a scheduling window, starting time frame, and sce-
nario specification.
 Due to the nature of ROSE, some characteristics of the
scheduling engine are compulsory. It must handle the mod-
els. It must respond quickly. Everything it schedules must
be “valid;” i.e., resources are never oversubscribed and con-
straints are never violated. Once something is in the
timeline, only the user can remove it; the scheduling engine
doesn’t adjust one task to fit another task into the timeline. It
must constrain each account so that its resource allocations

are not exceeded. Furthermore, ROSE must not lose any-
one’s scheduled tasks if the scheduling engine or the
computer crashes – scheduled tasks are committed to the
database immediately after scheduling
 Implementation The Java applet provides the user inter-
face for submitting a sequence to the scheduling engine.
When the schedule button is clicked, the model is saved to
the database via the web server and is then pre-checked for
errors. If the model has no errors, a dialog box permitting
the user to make selected model overrides is presented.
When the user completes the dialog, the request is sent to an
ASP on the web server. The ASP passes the request to an
ISAPI that forwards it to the scheduling queue. Only a single
instance of the multi-threaded ISAPI runs on the web server;
it funnels scheduling requests from all users into the head of
a communications pipeline to the scheduling queue at the
front end of the scheduling engine. After a request is queued,
the applet regularly polls the scheduling engine, via an ASP
and an ISAPI, to get the status of the request.
 The scheduling engine is a Windows NT/2000 “service”
with a control console for setup. The scheduling engine ac-
cesses the model, allocation, and timeline databases to
determine when, in the timeline, to schedule the request.
When the request is scheduled, a report is written on a local
file in html format. If the request cannot be scheduled, an
explanation is written on a local file in html format. The
request is now satisfied, the entry is cleared from the queue
and processing begins for another request. A summary of the
results is returned to the applet when it next polls the status.
 Upon receiving the notice of completion, the Java applet
sends a directive to the user’s web browser to display the
report. For successful requests, the report web page contains
a form that is preloaded with the request to delete what was
just scheduled. Figure 5 shows the main information flow
for a scheduling request.
 When a request is scheduled, a copy of the model is
stored with the timeline, thus allowing the user to continue
editing the model without limitations.

Inspecting the Timeline
 Implementation A web-page form provides the user inter-
face to request a display of timeline segments. The user can
specify the start and stop times of the report and that only the
user’s data should be included. The request is sent to an ASP
that converts it to a SQL statement that is sent to the data-
base. The resulting record set is reformatted into an html
page by the ASP and returned to the web browser. Figure 6
shows the flow of information when inspecting the timeline.
 By the time ROSE is deployed, inspection may be based
on XML (extensible markup language), with the ASP return-
ing XML data and an XML control in the web browser
handling the display of data. Using XML will provide client-
side control of what is displayed, thereby significantly in-
creasing the responsiveness of timeline inspection and
reducing the processing load on the web server and the data-
base.

JAVA
Applet

ASP
(VBScript)

Request

Request

(on completion)

Models

D
a

ta
b

a
se

W

e
b

 S
e

rv
e

r
C

lie
n

t

ISAPI

Report

Web
Browser

Http File
Contents

Status

Ftp
“get”

Timeline

Queue &
Scheduling

Engine

Report

Status
polling

Figure 5. Scheduling Flow

Deleting from the Timeline
 Implementation The timeline inspection web page pro-
vides the user interface for deleting tasks from the timeline.
The user selects a sequence performance to delete and sends
the request to an ASP on the web server. The ASP forwards
the request to the same ISAPI that handles scheduling re-
quests. The deletion request is put into the scheduling queue
for processing by the scheduling engine; deletion requests are
processed before scheduling requests. Figure 7 shows the
flow of information when deleting from the timeline.

Manual Editing of a Timeline
The ROSE architecture does not support true manual editing
of a timeline by remote users. A simulation of timeline edit-
ing can be accomplished by adding a command to reschedule
(delete a specified sequence performance and schedule a per-
formance of a sequence), with its supporting user interface.
If the requested sequence could not be scheduled, the original
sequence performance would be restored.

Other Applications
 Replacement for Current Scheduler ROSE could be
used as a replacement for the current scheduler with signifi-
cant benefit. It would eliminate several of the shortcomings
of the current scheduler. However, this approach does not
make the payload developers experts in modeling because it
does not provide the necessary immediate feedback. The
scheduling expertise still exists only in the cadre, and they
still have to become near-experts on the payloads they
schedule. This shortcoming could be overcome by allowing
the payload developers limited access to ROSE.
 Standalone What-If Scheduler Payload developers could
use ROSE to do “what-if” scheduling. If ROSE were also
the scheduler used by the scheduling cadre, then payload
developers could become modeling experts; and, by provid-
ing usable models, eliminate the requirement for the
scheduling cadre to become experts on the payloads.
 Job-Jar Scheduler ROSE could fill the need to have a
scheduler that allows the crew of the International Space

Station to schedule the “job-jar tasks.” These are tasks that
have been defined by payload developers, but not scheduled;
instead, they have been put into a collection of tasks that the
crew can do at their discretion. Currently, only tasks that do
not utilize shared resources (other than crew) are candidates
for the job jar because there is no way for the crew to know
payload resources requirements and timeline availabilities.
ROSE could easily fulfill the requirements of a job-jar
scheduler.

Summary
Can payload developers schedule their own payload activi-
ties? The answer is YES. A system is being designed and
demonstrated that will provide all the necessary features to
support this new approach to payload operations. The key is
high-fidelity modeling and a scheduling engine that can
schedule the models. The modeling challenge has been met,
and the solution is operational in iURC. Feedback from the
payload developers using iURC indicates that this modeling
approach meets the objective of being able to represent even
complex requirements in a straightforward, easy-to-use man-
ner. The World Wide Web provides the needed remote
access so that the payload developer community can access
ROSE with ease. Standard web software languages and
packages provide or enable most of needed features of
ROSE.
 Status of Research The ROSE project is a research and
development effort to investigate and demonstrate a system
that addresses all technical issues necessary to allow payload

Web Browser

ASP (VBScript)

Command

SQL Record Set

Html Page

Timeline

Database

Web
Server

Client

Figure 6. Inspecting the Timeline

ASP
(VBScript)

Request

Status
D

a
ta

b
a

se

W
e

b
 S

e
rv

e
r

C
lie

n
t

ISAPI
Report

Web Browser

Http
“Get”

File
Contents

Ftp
“get”

Timeline

Queue &
Scheduling

Engine
Report

 Http
“Redirect”

Figure 7. Deleting from Timeline

Status
polling

(on completion)

developers to schedule their own payloads. To date, exten-
sive work has been done on the critical element of modeling
and it has been put into operation via iURC. The system
architecture has been designed and demonstrated. A proto-
type of the scheduling engine has been developed, but it
needs some rework to exactly match the modeling. Security
issues are being investigated, but features such as firewalls
are standard fare and will not be demonstrated. An end-to-
end demonstration with a stubbed-out scheduling engine has
been done.
 Security Security of the ROSE architecture is a major
concern. ROSE is a web-based system that directly affects
spacecraft on-board operations. Therefore, security remedia-
tion has been integrated into the research from the beginning.
Since ROSE may become a reality, it is not wise to reveal the
tailored safeguards which are being developed. However,
some of the standard safeguards that might be included are
firewalls, perimeter security of the host computers, stringent
password rules, challenge-response recognition of users, cli-
ent computer certificates, address recognition of client
computers, and secure socket layer communication.
 Paradigm Shift Letting payload developers schedule their
own payload activities is a paradigm shift for NASA. While
it is clear that the ROSE approach will provide better cus-
tomer satisfaction and that cost savings could be realized, a
solution to the programmatic issues has not been embraced.
How will the success of the mission be ensured? How will
NASA ensure that the operations are safe, that they meet
international and other agreements, that the timeline will be
acceptable to all parties, and that scarce resources will be
shared equitably? A paper is being prepared which addresses
these questions (Jaap & Muery, 2000).

References
Jaap, J.; Davis, E.; and Meyer, P. 1997. Using Common
Graphics Paradigms Implemented in a Java Applet to Repre-
sent Complex Scheduling. In proceedings of International
Workshop on Planning and Scheduling for Space Exploration
and Science. 20-1—20-3. Oxnard, California.
http://payloads.msfc.nasa.gov/iURC/publications

Online User’s Manual for the Interim Users’ Requirements
Collection System:
http://payloads.msfc.nasa.gov/iURC/help

Jaap, J.; and Muery, K. 2000. Putting ROSE To Work: A
Proposed Application of a Request-Oriented Scheduling En-
gine for Space Station Operations. In proceeding of the sixth
International Symposium on Space Mission Operations and
Ground Data Systems (SpaceOps 2000). Toulouse France:
Spacecraft Operations Oriented International Association
(SpaceOps). Forthcoming.

Note: This paper is also available at
http://payloads.msfc.nasa.gov/ROSE/publications

